Replicative fabrication of metal molds for replicating polymers with low surface roughness

  • Mayer, R. Precision Injection Molding: How to Make Polymer Optics for High-Volume, High-Precision Applications. Opt. Photonik 246-51 (2007).

    Google Scholar article

  • Sortino, M., Totis, G. & Kuljanic, E. Comparison of injection molding technologies for the production of micro-optical devices. Procedia ing. 691296-1305 (2014).

    CAS Google Scholar Article

  • Zhang, H., Zhang, N., Han, W., Gilchrist, MD & Fang, F. Precision replication of microlens arrays using variotherm-assisted microinjection molding. Accurate. Eng. 67248-261 (2021).

    Google Scholar article

  • Fang, F., Zhang, N. & Zhang, X. Precision injection molding of free-form optics. Adv. Optical Technology. 5303–324 (2016).

    Google Scholar CAS Announcements

  • Piotter, V., Hanemann, T., Ruprecht, R. & Haußelt, J. Injection molding and related techniques for fabricating microstructures. Microsystem. Technology. 3129-133 (1997).

    Google Scholar article

  • Baumer, S. (Hg.). Manual of plastic optics. 35–62 (John Wiley & Sons, 2011).

  • Fang, FZ, Zhang, XD, Weckenmann, A., Zhang, GX, and Evans, C. Fabrication and measurement of free-form optics. CIRP Ann. 62823–846 (2013).

    Google Scholar article

  • Menges, G., Michaeli, W. & Mohren, P. How to make injection molds12–32, 85–103 (Carl Hanser Verlag GmbH Co KG, 2013).

  • Morrow, WR, Qi, H., Kim, I., Mazumder, J. & Skerlos, SJ Environmental aspects of laser-based and conventional tool and die making. J. Clean. production 15932–943 (2007).

    Google Scholar article

  • Piotter, V., Holstein, N., Plewa, K., Ruprecht, R. & Hausselt, J. Replication of micro-components by different injection molding variants. Microsystem. Technology. ten547–551 (2004).

    CAS Google Scholar Article

  • Launhardt, M. et al. Detection of surface roughness on SLS parts with various measurement techniques. Polym. Test. 53217-226 (2016).

    CAS Google Scholar Article

  • Pham, DT, Dimov, SS, Ji, C., Petkov, PV & Dobrev, T. Laser milling as a “fast” microfabrication process. proc. Inst. Mech. Eng., Part B: J. Eng. Fab. 2181–7 (2004).

    Google Scholar article

  • Gibson, I., Rosen, DW, Stucker, B. & Khorasani, M. Additive manufacturing technologies. 65, 314, 458, 614 (Swiss Cham: Springer, 2021).

  • Kumbhar, NN & Mulay, AV Post-processing methods used to improve the surface finish of products made by additive manufacturing technologies: a review. J. Inst. Eng. India Ser. VS 99481–487 (2018).

    Google Scholar article

  • Khaing, MW, Fuh, JYH & Lu, L. Direct metal laser sintering for rapid tooling: processing and characterization of EOS parts. J. Mater. Treat. Technology. 113269-272 (2001).

    CAS Google Scholar Article

  • Chung, S., Park, S., Lee, I., Jeong, H. & Cho, D. Techniques for replicating a metallic microcomponent having a real 3D shape by micromolding process. Microsystem. Technology. 11424–428 (2005).

    CAS Google Scholar Article

  • Schmitz, GJ, Grohn, M. & Bührig-Polaczek, A. Fabrication of micro-patterned surfaces by improved investment casting. Adv. Eng. Mater. 9265-270 (2007).

    CAS Google Scholar Article

  • Baumeister, G., Ruprecht, R. & Hausselt, J. Replicating LIGA structures using microdiffusion. Microsystem. Technology. ten484–488 (2004).

    CAS Google Scholar Article

  • Cannon, AH & King, WP Casting metal microstructures from a flexible, reusable mould. J. Micromech. Microeng. 19095016 (2009).

    Article on Google Scholar Ads

  • Baumeister, G., Mueller, K., Ruprecht, R., and Hausselt, J. Production of high aspect ratio metal microstructures by micromolding. Microsystem. Technology. 8105-108 (2002).

    CAS Google Scholar Article

  • Kotz, F. et al. Liquid glass: an easy method of soft replication to structure glass. Adv. Mater. 284646–4650 (2016).

    CAS Google Scholar Article

  • Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544337–339 (2017).

    ADS CAS Article Google Scholar

  • Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mater. 332006341 (2021).

    CAS Google Scholar Article

  • Mader, M. et al. High-speed injection molding of transparent fused silica glass. Science 372182-186 (2021).

    ADS CAS Article Google Scholar

  • Faraji Rad, Z., Prewett, PD & Davies, GJ High-resolution two-photon polymerization: the most versatile technique for fabricating microneedle arrays. Microsystem. Nanoeng. seven71 (2021).

    CAS Google Scholar Article

  • Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Direct two-photon laser writing of ultracompact multi-lens objectives. Nat. Photon ten554-560 (2016).

    ADS CAS Article Google Scholar

  • Williams, S.S. et al. PFPE-Based High-Resolution Casting Techniques for Nanofabrication of High-Density Patterned Features, Sub-20 nm: A Fundamental Materials Approach. Nano Lett. ten1421-1428 (2010).

    ADS CAS Article Google Scholar

  • Kotz, F. et al. Fused silica glass by processing glassomer as a polymer. Adv. Mater. 301707100 (2018).

    Google Scholar article

  • Vass, C., Smausz, T. & Hopp, B. Wet etching of fused silica: a multiplex study. J.Phys. D: Appl. Phys. 372449-2454 (2004).

    ADS CAS Article Google Scholar

  • Kelly, AL, Mulvaney-Johnson, L., Beechey, R. & Coates, PD The effect of copper alloy mold tooling on injection molding process performance. Polym. Eng. Science. 511837–1847 (2011).

    CAS Google Scholar Article

  • Nair, S., Sellamuthu, R. & Saravanan, R. Effect of nickel content on hardness and wear rate of surface-modified cast aluminum bronze alloy. Mater. Today. : Process. 56617–6625 (2018).

    CAS Google Scholar

  • Dobbs, HS & Robertson, JLM Heat treatment of cast Co-Cr-Mo for use in orthopedic implants. J. Mater. Science. 18391–401 (1983).

    ADS CAS Article Google Scholar

  • Flemings, MC Solidification treatment. Meet. Mater. Trans. B 52121-2134 (1974).

    CAS Google Scholar Article

  • Ravi, B. & Srinivasan, MN Cast solidification analysis by modulus vector method. Int. J.Cast. Meet. Res. 91–7 (1996).

    CAS Google Scholar Article

  • Paul, C. & Sellamuthu, R. The effect of Sn content on the properties of surface-refined Cu-Sn bronze alloys. Procedia ing. 971341-1347 (2014).

    CAS Google Scholar Article

  • Atsumi, H. et al. Microstructure and mechanical properties of a high strength brass alloy with certain elements. MSF 654–6562552-2555 (2010).

    Google Scholar article